General approach to polymer chains confined by interacting boundaries. II. Flow through a cylindrical nano-tube.
نویسندگان
چکیده
The Laplace-Green's function methods of Paper I are extended to describe polymers confined in interacting, impenetrable cylindrical geometries, whose treatment is far more challenging than the slit and box geometries considered in Paper I. The general methods are illustrated with calculations (as a function of the polymer-surface interaction) of the free energy of confinement, the radial density profile, and the average of the drag force in the free draining limit, quantities that will be used elsewhere to analyze experiments of Wu and co-workers involving the flow of polymers through nanopores. All these properties are evaluated by numerical inverse Laplace transforms of closed form analytical expressions, a significant savings over the traditional eigenfunction approaches. The example of the confinement free energy for a 3-arm star polymer illustrates the treatment when a closed form expression for the Laplace transform is unavailable.
منابع مشابه
Simulation of polymers in a curved box : Variable range bond - ing models
– We propose new polymer models for Monte Carlo simulation and apply them to a polymer chain confined in a relatively thin box which has both curved and flat sides, and show that either an ideal or an excluded-volume chain spends more time in the curved region than in the flat region. The ratio of the probability of finding a chain in the curved region and in flat region increases exponentially...
متن کاملRing polymers as model bacterial chromosomes: confinement, chain topology, single chain statistics, and how they interact
Chromosomes in living cells are strongly confined but show a high level of spatial organization. Similarly, confined polymers display intriguing organizational and segregational properties. Here, we discuss how ring topology influences self-avoiding polymers confined in a cylindrical space, i.e. individual polymers as well as the way they interact. Our molecular dynamics simulations suggest tha...
متن کاملFinite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملFinite element modeling of polymer matrix nano-composites reinforced by nano-cylindrical fillers
A new three-dimensional unit cell model has been developed for modeling three constituent phases including inclusion, interphase and matrix. The total elastic modulus of nano-composite is evaluated. Numerical results are in good agreement with the previous proposed theoretical modeling. Higher matrix and inclusion elastic modulus both can dramatically influence the total elastic modulus.
متن کاملThe Effects of Different SDE Calculus on Dynamics of Nano-Aerosols Motion in Two Phase Flow Systems
Langevin equation for a nano-particle suspended in a laminar fluid flow was analytically studied. The Brownian motion generated from molecular bombardment was taken as a Wiener stochastic process and approximated by a Gaussian white noise. Euler-Maruyama method was used to solve the Langevin equation numerically. The accuracy of Brownian simulation was checked by performing a series of simulati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of chemical physics
دوره 135 14 شماره
صفحات -
تاریخ انتشار 2010